Path integral solution by fractional calculus

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Weighted Integral Inequalities for Generalized Conformable Fractional Calculus

In this paper, we have obtained weighted versions of Ostrowski, Čebysev and Grüss type inequalities for conformable fractional integrals which is given by Katugompola. By using the Katugampola definition for conformable calculus, the present study confirms previous findings and contributes additional evidence that provide the bounds for more general functions.

متن کامل

Some Fractional Integral Inequalities in Quantum Calculus

In this paper, using the Riemann-Liouville fractional q-integral, we establish some new fractional integral inequalities by using two parameters of deformation q1 and q2.

متن کامل

Rough Path Analysis Via Fractional Calculus

Using fractional calculus we define integrals of the form ∫ b a f(xt)dyt, where x and y are vector-valued Hölder continuous functions of order β ∈ ( 1 3 , 1 2 ) and f is a continuously differentiable function such that f ′ is λ-Höldr continuous for some λ > 1 β − 2. Under some further smooth conditions on f the integral is a continuous functional of x, y, and the tensor product x ⊗ y with respe...

متن کامل

Path Integral Solution by Sum Over Perturbation Series

A method for calculating the relativistic path integral solution via sum over perturbation series is given. As an application the exact path integral solution of the relativistic Aharonov-Bohm-Coulomb system is obtained by the method. Different from the earlier treatment based on the space-time transformation and infinite multiple-valued trasformation of Kustaanheimo-Stiefel in order to perform...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics: Conference Series

سال: 2008

ISSN: 1742-6596

DOI: 10.1088/1742-6596/96/1/012007